4.3 Article

Enhancing rare plant population predictions through demographic modeling of seed predation, dispersal, and habitat suitability

期刊

PLANT ECOLOGY
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11258-023-01376-4

关键词

Lindera subcoriacea; Metapopulation; Seed dispersal; Small population; Longleaf pine

向作者/读者索取更多资源

Understanding the effects of seed predation, dispersal, and recruitment on rare plant species is crucial for effective management strategies. This study found that pre-dispersal seed predation, dispersal, and habitat suitability negatively impact the population growth rates of bog spicebush, highlighting the importance of including these parameters in demographic models.
Understanding the effects of seed predation, dispersal, and recruitment on the population dynamics of rare plant species is essential for generating effective management strategies. Unfortunately for most rare plants, the parameterization of these processes is limited and generally not included in demographic analyses. This exclusion can lead to biased estimates of vital rates and overall population growth rates, as well as limit inferences about inter-population processes like colonization and demographic rescue that can affect population viability. Based on previous empirical studies from Fort Liberty (formerly Fort Bragg) North Carolina (USA), we constructed a spatially explicit demographic model that accounts for pre-dispersal seed predation, dispersal, and habitat suitability for Lindera subcoriacea (bog spicebush), a rare shrub in the southeastern United States. We demographically modeled three scenarios: S1 did not include any of the three parameters; S2 accounted for seed predation and dispersal; and S3 included all three of the parameters. Results suggested that pre-dispersal seed predation, dispersal, and habitat suitability negatively impact the population growth rates of bog spicebush relative to the naive demographic model. After 100 annual time steps, scenarios S1, S2, and S3 led to a 96%, 49%, and 1% increase in population size, respectively. In addition, over the course of 100 years, results of scenarios S2 and S3 demonstrated limited increases in site occupancy, with newly occupied areas located < 1 km from previously occupied habitat. Our results suggest additional parameterization of plant demographic models may be an informative endeavor and warranted, even in the absence of empirical data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据