4.7 Article

Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin delivery: Molecular docking, stability and bioactivity

期刊

FOOD CHEMISTRY
卷 438, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2023.137963

关键词

Luteolin; Sesame leaves; Exosomes; Delivery; Stability; Anti-inflammatory activity

向作者/读者索取更多资源

The study developed a novel nanocarrier Exo@Lu, which improved the water solubility and stability of Lu through encapsulation mechanism, enhancing bioavailability and efficacy in mitigating oxidative stress and inflammatory response.
The growing recognition of luteolin (Lu) as a vital functional component is attributed to its notable bioactive properties. However, the effective use of Lu is hindered by its inherent limitations related to water solubility, stability, and bioavailability. Here, we aim to develop sesame leaves-derived exosome-like nanovesicles (Exo) for Lu delivery (Exo@Lu) as vehicles. The encapsulation mechanism, solubility, stability, and bioactivity of Exo@Lu were thoroughly evaluated. Exo enriched abundant lipids, proteins, and phenolic compounds with an encap-sulation efficiency of -91.9 % and a loading capacity of -20.5 % for Lu. The primary binding forces responsible for the encapsulation were hydrogen bonds and van der Waals forces. After encapsulation, the water solubility and stability of Lu were significantly improved under various conditions, including thermal, light, storage, ionic strength, and pH. Exo@Lu maintained structural integrity during simulated digestion, enhancing bioaccessibility and efficacy in mitigating oxidative stress and inflammatory response compared to Exo and free Lu.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据