4.7 Article

Construction of walnut protein/tea polyphenol/alginate complex for enhancing heat and gastrointestinal tolerance of lactic acid bacteria

期刊

FOOD HYDROCOLLOIDS
卷 149, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2023.109523

关键词

Gastrointestinal tolerance; Intestinal release lactic acid bacteria; Capsule; Self-aggregation; Walnut protein

向作者/读者索取更多资源

This study developed a complex composed of walnut protein, tea polyphenol, and Lactobacillus rhamnosus cells, which self-aggregated under acidic conditions and were coated with alginate. The complex formation was facilitated by hydrogen bonding and hydrophobic interactions. The complex showed high thermal stability and exhibited a significant increase in live bacterial cells compared to free cells in simulated gastric fluid. Oral administration of the complex increased the abundance of specific bacteria in the colon and cecum of mice. These findings contribute to the development of highly active probiotic products and provide insights into the underlying mechanisms.
The presence of live cells in the intestinal tract is crucial for the beneficial effects of probiotic products containing lactic acid bacteria. However, many bacterial cells lose viability during production, storage, and gastric passage. Protein-based hydrogels and polysaccharide-based capsules effectively enhance the viability of live probiotic cells in products, but the underlying mechanisms and in vivo effectiveness are unclear. In this study, a complex was developed by self-aggregating walnut protein, tea polyphenol, and Lactobacillus rhamnosus cells under acidic conditions, followed by alginate coating. Complex formation was facilitated by hydrogen bonding and hydrophobic interactions. The complex had a low thermal diffusion coefficient of 4.9 x 10- 7 m2/s, making the bacterial cells resistant to temperature fluctuation. Cell survival rate was 75.5% after 12 h at 55 degrees C and 92.8% after freeze-drying. Shelf-life predictions were 14 years at 4 degrees C. and 2.3 months at 25 degrees C, with a live cell count exceeding 106 CFU/g. The product demonstrated a 60% increase in live bacterial cells compared to free cells in simulated gastric fluid, and achieved complete release in simulated intestinal fluid within 120 min. This method was successfully applied to L. rhamnosus, L. casei and L. plantarum. Oral administration of the L. rhamnosus product significantly increased the abundance of Lactobacillus and L. rhamnosus in the colon and cecum of mice. These findings present a new method for producing highly active probiotic products using plant materials and provide insights into the underlying mechanisms from a thermodynamic perspective, contributing to the industrialization and advancement of probiotics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据