4.7 Article

Importance of carbon and nitrogen availability to microbial necromass carbon accumulation in the drawdown area

期刊

CATENA
卷 235, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.catena.2023.107688

关键词

Microbial necromass; Soil organic carbon; Drawdown area; Carbon and nitrogen availability; Microbial community

向作者/读者索取更多资源

Lake drawdown areas, where sediment is exposed due to water level fluctuations, have a significant impact on the carbon cycle. This study examined microbial necromass carbon (MNC) content and its contribution to soil organic carbon (SOC) in different habitats within the drawdown area of Dongting Lake. The results showed that MNC content varied among habitats and was primarily influenced by carbon and nitrogen availability, plant biomass, clay content, and soil moisture. External factors, such as plant and soil properties, played a more crucial role in the long-term accumulation of MNC. These findings enhance our understanding of MNC stability in drawdown areas.
Lake drawdown areas -where sediment is exposed to the atmosphere due to water level fluctuations -have a nonnegligible impact on the carbon cycle. However, our knowledge of microbial necromass carbon (MNC) in the drawdown area remains to be seen, which has been considered an essential precursor to soil organic carbon (SOC). Here, we examined the content of MNC and its contribution to SOC in three typical habitats (mudflat, grass, and reed area) from the water edge to the uplands in the seasonal drawdown area of Dongting Lake. MNC content in the drawdown area ranged from 1.31 to 3.73 g kg -1, accounting for 27.39 %, 24.51 %, and 27.91 % of SOC in mudflat, grass, and reed areas, respectively. Compared to mudflat areas (1.83 +/- 0.11 g kg -1), vegetated areas (grass: 2.15 +/- 0.18 g kg -1; reed: 2.51 +/- 0.18 g kg -1) showed a higher MNC content. MNC variation was mainly related to carbon and nitrogen availability, plant biomass, clay content, and soil moisture. Our results showed that microbial properties were not essential in regulating MNC accumulation. Instead, external factors such as plant and soil properties played a more critical role in the long-term iterative process of MNC accumulation. Carbon and nitrogen availability, as regulated by plant biomass, clay content, and soil moisture, was dominant in MNC accumulation in drawdown areas. In conclusion, these findings highlight the critical role of external factors in MNC accumulation, which would enhance our understanding of MNC stability in drawdown areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据