4.7 Review

Mechanisms and modelling approaches for excessive rainfall stress on cereals: Waterlogging, submergence, lodging, pests and diseases

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 344, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2023.109819

关键词

Excess rain; Yield loss mechanisms; Process-based crop model; Model improvement

向作者/读者索取更多资源

As climate change is expected to increase the intensity and frequency of extreme weather events, it is crucial to assess their impact on cropping systems and explore adaptation options. Process-based crop models (PBCMs) have improved in simulating the impacts of major extreme weather events, but still struggle to reproduce low crop yields under wet conditions. This article provides an overview of the yield-loss mechanisms of excessive rainfall in cereals and the associated modelling approaches, aiming to guide improvements in PBCMs.
As the intensity and frequency of extreme weather events are projected to increase under climate change, assessing their impact on cropping systems and exploring feasible adaptation options is increasingly critical. Process-based crop models (PBCMs), which are widely used in climate change impact assessments, have improved in simulating the impacts of major extreme weather events such as heatwaves and droughts but still fail to reproduce low crop yields under wet conditions. Here, we provide an overview of yield-loss mechanisms of excessive rainfall in cereals (i.e., waterlogging, submergence, lodging, pests and diseases) and associated modelling approaches with the aim of guiding PBCM improvements. Some PBCMs simulate waterlogging and ponding environments, but few capture aeration stresses on crop growth. Lodging is often neglected by PBCMs; however, some stand-alone mechanistic lodging models exist, which can potentially be incorporated into PBCMs. Some frameworks link process-based epidemic and crop models with consideration of different damage mechanisms. However, the lack of data to calibrate and evaluate these model functions limit the use of such frame-works. In order to generate data for model improvement and close knowledge gaps, targeted experiments on damage mechanisms of waterlogging, submergence, pests and diseases are required. However, consideration of all damage mechanisms in PBCM may result in excessively complex models with a large number of parameters, increasing model uncertainty. Modular frameworks could assist in selecting necessary mechanisms and lead to appropriate model structures and complexity that fit a specific research question. Lastly, there are potential synergies between PBCMs, statistical models, and remotely sensed data that could improve the prediction ac-curacy and understanding of current PBCMs' shortcomings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据