4.7 Article

RAGN-L: A stacked ensemble learning technique for classification of Fire-Resistant columns

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 240, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2023.122491

关键词

ML; Stacking ensemble; TVAE; Fire resistance; Reinforced concrete columns

向作者/读者索取更多资源

One of the main challenges in using reinforced concrete materials in structures is to comprehend their fire resistance. This research proposes a novel ensemble machine learning approach to classify columns according to their fire resistance characteristics, and demonstrates that it outperforms other classifiers in practical applications.
One of the main challenges in using reinforced concrete materials in structures is to comprehend their fire resistance. The assessment of fire resistance can be performed in a laboratory environment using fire. However, such tests are time-consuming and expensive, and they may not provide a complete assessment of all relevant properties of a particular tested specimen. To that end, the implementation of machine learning (ML) in the investigation of fire-resistant structural performance would be beneficial, as it would also contribute to the reduction of time and cost problems related to traditional techniques. Here, this research proposes a novel ensemble ML approach to classify columns according to their fire resistance characteristics, supporting the application of ML techniques by fire engineers and scientists. The proposed model, named RAGN-L, combines Random Forest, Adaptive Boosting, and Gradient Naive Bayes, and is stacked using the Logistic Regression approach. RAGN-L is evaluated on real-world databases of reinforced concrete columns and concrete-filled steel tube columns, as well as a synthetic database generated by the TVAE deep learning model. The performance of the proposed solution is compared with ten different ML classifiers based on common statistical metrics, accu-racy, precision, recall, and f1-score, and validated using the k-fold cross-validation approach. The developed algorithm outperforms ten different classifiers in all databases, with classification accuracies of 86.6%, and 99.6% for the real-world and synthetic databases of reinforced concrete columns, respectively, and 88.1% for the real-world database of concrete-filled steel tube columns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据