4.7 Article

A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107706

关键词

Pollen prediction; LSTM; Random forest; Neural network

向作者/读者索取更多资源

Airborne pollen can cause allergic rhinitis and other respiratory diseases, making accurate pollen forecast systems crucial for public health. This study applied LSTM algorithms to forecast monthly pollen integrals in Malaga and found that the CNN-LSTM model was the most accurate. Traditional forecast methods were outperformed by all LSTM variants.
Airborne pollen can trigger allergic rhinitis and other respiratory diseases in the synthesised population, which makes it one of the most relevant biological contaminants. Therefore, implementing accurate forecast systems is a priority for public health. The current forecast models are generally useful, but they falter when long time series of data are managed. The emergence of new computational techniques such as the LSTM algorithms could constitute a significant improvement for the pollen risk assessment. In this study, several LSTM variants were applied to forecast monthly pollen integrals in Malaga (southern Spain) using meteorological variables as predictors. Olea and Urticaceae pollen types were modelled as proxies of different annual pollen curves, using data from the period 1992-2022. The aims of this study were to determine the LSTM variants with the highest accuracy when forecasting monthly pollen integrals as well as to compare their performance with the traditional pollen forecast methods. The results showed that the CNN-LSTM were the most accurate when forecasting the monthly pollen integrals for both pollen types. Moreover, the traditional forecast methods were outperformed by all the LSTM variants. These findings highlight the importance of implementing LSTM models in pollen forecasting for public health and research applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据