4.5 Article

Shock capturing for a high-order ALE discontinuous Galerkin method with applications to fluid flows in time-dependent domains

期刊

COMPUTERS & FLUIDS
卷 269, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2023.106124

关键词

Discontinuous Galerkin; High-order methods; Arbitrary Lagrangian-Eulerian Approach; Moving mesh; Shock capturing; Fluid-structure interaction

向作者/读者索取更多资源

In recent decades, the arbitrary Lagrangian-Eulerian (ALE) approach has gained popularity in dealing with fluid flows with moving boundaries. This paper presents a novel algorithm that combines the ALE finite volume (FV) and ALE discontinuous Galerkin (DG) methods into a stable and efficient hybrid approach. The main challenge of this mixed ALE FV and ALE DG method is reducing the inconsistency between the two discretizations. The proposed algorithm is implemented into a loosely-coupled fluid-structure interaction (FSI) framework and is demonstrated through various benchmark test cases and complex scenarios.
In recent decades, the arbitrary Lagrangian-Eulerian (ALE) approach has been one of the most popular choices to deal with the fluid flows having moving boundaries. The ALE finite volume (FV) method is well-known for its capability of shock capturing. Several ALE discontinuous Galerkin (DG) methods are developed to fully explore the advantages of high-order methods, especially in complex flows. The DG scheme is highly efficient and has high resolution in smooth parts of the flow while the FV scheme has advantage on the robustness against shocks. In this paper, we present a novel algorithm to combine both the ALE FV and ALE DG methods into one stable and efficient hybrid approach. The main challenge for a mixed ALE FV method and ALE DG method is to reduce the inconsistency between both discretizations. Of particular concern are the same mesh velocity distribution between DG and FV elements and a continuous mesh velocity at the coupling interfaces. Since the computational efficiency of the proposed algorithm is of major concern, performance aspects will be considered during the construction of the scheme. To investigate the accuracy of the new scheme, several benchmark test cases with prescribed movements are included. Afterwards, the algorithm is applied to more general and complex scenarios to show its ability to cope with complex setups. In our paper, the scheme is implemented into a loosely-coupled fluid-structure interaction (FSI) framework. With a shock-driven cylinder movement in a channel flow and a transonic flow-induced airfoil vibration, we demonstrate our method for FSI applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据