4.7 Article

Experimental and numerical investigation on the influence of wall deformations on mixing quality of a Multifunctional Heat Exchanger/Reactor (MHER)

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2023.124862

关键词

Multifunctional Heat Exchanger/Reactor (MHER); Chaotic advection; Sinusoidal deformations; Swirled core; Residence time distribution

向作者/读者索取更多资源

This study explores the enhancement of mixing performance in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The findings demonstrate that the combined geometry can achieve perfect mixing at various Reynolds numbers.
This study focuses on the mixing performance enhancement in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The results presented concern the mixing quality in two different geometries, one with a deformed sinusoidal wall DT (Deformed Tube), and the other with a combination of deformed sinusoidal external wall and a swirled core DETSC (Deformed External Tube and Swirled Internal Core). The goal is to evaluate the influence of the swirled core on the mixing, and to determine if this combination of wall deformations could improve the mixing quality for Reynolds numbers ranging from 800 to 2000. To provide a comprehensive analyse, the evaluation is conducted based on two aspects: the process engineering aspect, through experimental Residence Time Distribution (RTD) to gain an overview of the dispersion of fluid particles in the reactors, and the fluid mechanics aspect, using various numerical tools such as the mixing rate, Poincare sections, and particle trajectories to better analyse the secondary flows resulting from wall deformations and assess the mixing in terms of concentration. These two aspects allow to characterize the mixture globally and locally. The findings demonstrated that the combined geometry induced chaotic advection, resulting in a perfect mixing rate of 100% across the entire range of Reynolds numbers studied, compared to the DT configuration where the maximum achieved mixing rate reaches 70% at Re = 2000.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据