4.5 Article

Projection of current and future distribution of adaptive genetic units in an alpine ungulate

期刊

HEREDITY
卷 -, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41437-023-00661-2

关键词

-

向作者/读者索取更多资源

This study investigates how the adaptive genetic variation of the Northern chamois is affected by future global warming. The results show that the chamois exhibit local adaptation and future climate changes will significantly modify their adaptive landscape.
Climate projections predict major changes in alpine environments by the end of the 21st century. To avoid climate-induced maladaptation and extinction, many animal populations will either need to move to more suitable habitats or adapt in situ to novel conditions. Since populations of a species exhibit genetic variation related to local adaptation, it is important to incorporate this variation into predictive models to help assess the ability of the species to survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain ungulate-the Northern chamois (Rupicapra rupicapra)-could be impacted by future global warming. Based on genotype-environment association analyses of 429 chamois using a ddRAD sequencing approach, we identified genetic variation associated with climatic gradients across the European Alps. We then delineated adaptive genetic units and projected the optimal distribution of these adaptive groups in the future. Our results suggest the presence of local adaptation to climate in Northern chamois with similar genetic adaptive responses in geographically distant but climatically similar populations. Furthermore, our results predict that future climatic changes will modify the Northern chamois adaptive landscape considerably, with various degrees of maladaptation risk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据