4.7 Article

Resource-efficient fault-tolerant one-way quantum repeater with code concatenation

期刊

NPJ QUANTUM INFORMATION
卷 9, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41534-023-00792-8

关键词

-

向作者/读者索取更多资源

This study proposes a resource-efficient one-way quantum repeater that utilizes quantum error-correcting codes to counteract loss and operational error rates in a communication channel. By minimizing resource overhead and using tailored error-correcting codes, reliable quantum bit transmission can be achieved over intercontinental distances.
One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据