4.5 Article

Modeling capillary flows by conservation of acceleration and surface energy

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2023.104672

关键词

Capillary effects; Surface tension; Discrete mechanics; Helmholtz-Hodge decomposition; Conservation of acceleration

向作者/读者索取更多资源

This article introduces a method for modeling capillary flows on a surface or at the interface of two fluids. The method involves handling the two components of capillary acceleration using the divergence and curl of surface normal. The proposed formulation is characterized by directional curvature based on dihedral angle, intrinsic anisotropic surface tension per unit mass, and introduction of capillary potential.
Modeling of capillary flows on a surface or at the interface of two fluids is approached from a formulation with two contributions, one described by the divergence of the normal to the surface and the second represented by its curl. These are the two curl-free and divergence-free components of a Helmholtz-Hodge decomposition of the capillary acceleration; the first is the gradient of the scalar potential of the acceleration and the second the dual curl of the vector potential. Proposed formulation is characterized by (i) definition of a directional curvature based on the dihedral angle instead of an average curvature, (ii) an intrinsic anisotropic surface tension per unit mass excluding the presence of density in the capillary terms of the equation of motion and (iii) introduction of a capillary potential, an energy per unit mass. This energetic approach leads to an equation of capillary motion of a surface without thickness; the same formalism can be integrated as a source in an equation of motion of immiscible fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据