4.7 Article

Mechanism of toughness enhancement of brittle fracture by intermittent η-intermetallic in Al/Cu joint made by FSW

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2023.145907

关键词

Aluminum-copper; FSW; Brittle fracture; Multi-faceted fracture; Fracture toughness

向作者/读者索取更多资源

This study used Friction Stir Welding (FSW) technique to create a clean and uniform Al/Cu interface and investigated the mechanism of pure brittle fracture. The results showed that multilayered fracture, intergranular fracture, and delamination of the Al/Al2Cu interface were all associated with brittle fracture.
It is well documented that the mechanical failure mechanism of various compounds of aluminum 1050 and commercial pure copper (Al/Cu) involves a combination of brittle and ductile fracture processes. Brittle fracture occurs through the intermetallic compounds (IMCs), while ductile fracture occurs through the base materials, either in the stir zone or the heat-affected zone. In this study, a clean and uniform Al/Cu interface was created using the Friction Stir Welding (FSW) technique, which allowed the investigation of the mechanism of pure brittle fracture in Al-Cu IMCs, using a notched tensile specimen. Fracture surfaces were analyzed in detail using scanning electron microscopy (SEM) and microstructural characterization techniques. SEM analysis of the Al/Cu interface revealed the presence of continuous Al2Cu, intermittent AlCu (eta), and continuous Al4Cu9. Fractography results showed that the brittle fracture was multilayered and multi-faceted, with an intergranular fracture observed between the Al2Cu and Al4Cu9 IMCs. This crack was stopped by the intermittent AlCu IMC, resulting in transgranular fracture through AlCu. Cracks in the AlCu phase were deflected toward the Al/Al2Cu interface, resulting in delamination of the Al/Al2Cu interface. It was found that this multilayer fracture, induced by the intermittent AlCu between Al2Cu/Al4Cu9, provided the high tensile strength of the compound (173 MPa) compared to the values reported in the literature. A comparison of the Al/Cu joints with Al/steel joints also confirmed the contribution of this fracture deflection to the improved joint strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据