4.4 Article

Role of mammalian target of rapamycin in the formation and progression of retinopathy of prematurity-like vascular abnormalities in neonatal rats

期刊

MICROVASCULAR RESEARCH
卷 152, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2023.104626

关键词

Angiogenesis; Arteriolar tortuosity; Endothelial cell proliferation; Mammalian target of rapamycin; Vascular endothelial growth factor

向作者/读者索取更多资源

This study examines the preventative and therapeutic effects of inhibiting mammalian target of rapamycin complex 1 (mTORC1) on abnormal retinal blood vessels in a rat model of retinopathy of prematurity (ROP). The results suggest that mTORC1 activation in proliferating endothelial cells contributes to the appearance and progression of ROP-like retinal blood vessels. Inhibition of mTORC1 may be a promising approach for selectively targeting abnormal retinal blood vessels in ROP.
Retinopathy of prematurity (ROP), a retinal disease that can occur in premature infants, can lead to severe visual impairment. In this study, we examined the preventive and therapeutic effects of mammalian target of rapamycin complex 1 (mTORC1) inhibition on abnormal retinal blood vessels in a rat model of ROP. To induce ROP-like vascular abnormalities, rats were subcutaneously treated with KRN633, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinase, on postnatal day 7 (P7) and P8. KRN633-treated (ROP) rats were treated subcutaneously with the mTORC1 inhibitor rapamycin according to preventive and therapeutic protocols, i.e., from P11 to P13 (P11-P13) and from P14 to P20 (P14-P20), respectively. To compare with the effects of VEGF inhibition, KRN633 was administered according to similar protocols. Changes in retinal vasculature, phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, and the proliferative status of vascular cells were evaluated at P14 and P21 using immunohistochemistry. Rapamycin treatment from P11 to P13 prevented increases in arteriolar tortuosity, capillary density, and the number of proliferating vascular cells, and eliminated pS6 immunoreactivity in ROP rats. KRN633 treatment at P11 and P12 (P11/P12) also prevented the appearance of ROP-like retinal blood vessels. Rapamycin treatment from P14 to P20 failed to attenuate arteriolar tortuosity but prevented increases in capillary density and proliferating vascular cell number at the vascular front, but not at the central zone. KRN633 treatment from P14 to P20 significantly reduced abnormalities in the retinal vasculature; however, the effects were inferior to those of KRN633 treatment on P11/ P12. These results suggest that activation of the mTORC1 pathway in proliferating endothelial cells contributes to the appearance and progression of ROP-like retinal blood vessels. Therefore, inhibition of mTORC1 may be a promising approach for selectively targeting abnormal retinal blood vessels in ROP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据