4.7 Article

Construction of core-shell CoSe2/ZnIn2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen evolution

期刊

DALTON TRANSACTIONS
卷 53, 期 2, 页码 675-683

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3dt03379a

关键词

-

向作者/读者索取更多资源

This study successfully fabricated visible-light-responsive three-dimensional core-shell CoSe2/ZnIn2S4 heterostructures and achieved attractive activity in photocatalytic hydrogen evolution. The presence of CoSe2 improved light absorption and accelerated charge transfer kinetics. The strong interaction between CoSe2 and ZnIn2S4 reduced charge recombination, further enhancing photocatalytic activity for hydrogen evolution.
The use of photocatalysts based on semiconductor heterostructures for hydrogen evolution is a prospective tactic for converting solar energy. Herein, visible-light-responsive three-dimensional core-shell CoSe2/ZnIn2S4 heterostructures were successfully fabricated via in situ growth of ZnIn2S4 ultrathin nanosheets on spherical CoSe2. Without any noble metal co-catalysts, the as-prepared CoSe2/ZnIn2S4 composite achieved attractive photocatalytic hydrogen evolution activity under visible light illumination. Optimal CoSe2/ZnIn2S4 achieved a hydrogen evolution rate of 2199 mu mol g(-1) h(-1), which was 7 times higher than that of pristine ZnIn2S4 and even exceeded that of ZnIn2S4 loaded with platinum. In this distinctive core-shell heterostructure, the presence of CoSe(2 )could considerably improve the ability to harvest light, quicken the charge transfer kinetics, and avoid the agglomeration of ZnIn2S4 nanosheets. Meanwhile, the experimental results demonstrated that the strong interaction between CoSe2 and ZnIn2S4 at the compact interface could appropriately boost the photogenerated electron-hole pair migration and relieve charge recombination, thus improving photocatalytic hydrogen evolution activity. This work has bright prospects in constructing noble-metal-free core-shell heterostructures for solar energy conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据