4.7 Article

Aryl selenonium vs. aryl sulfonium counterions in polyoxometalate chemistry: the impact of Se+ cationic centers on the photocatalytic reduction of dichromate

期刊

DALTON TRANSACTIONS
卷 53, 期 2, 页码 724-737

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3dt03465h

关键词

-

向作者/读者索取更多资源

A new aryl selenonium polyoxometalate hybrid was developed and compared with an aryl sulfonium polyoxometalate hybrid in terms of their photocatalytic properties. It was found that the aryl selenonium hybrid exhibited better catalytic performance, which could be attributed to the larger atomic radii of selenium stabilizing the photogenerated electron-hole pair more efficiently. Additionally, the generation of elemental selenium through cleavage of C-Se bonds during catalysis was observed.
A selenonium organic counter ion has been used in polyoxometalate chemistry to develop a new aryl selenonium polyoxometalate (POM) hybrid, and its photocatalytic properties have been explored in comparison with an aryl sulfonium POM-hybrid counterpart for the first time. The chalcogenonium counterions, namely, methyldiphenylsulfonium trifluoromethane sulfonate (MDPST) and methyldiphenylselenonium trifluoromethane sulfonate (MDPSeT), and their octamolybdate ([Mo8O26](4-)) hybrids, 1 and 2, with the general formula (C13H13X)(4)[Mo8O26] (where X = S for 1 and Se for 2) were synthesized and characterized. Hybrids 1 and 2 vary in their chalcogenonium cationic center (S(+ )vs. Se+), which enabled a direct comparison of their photocatalytic properties as a function of the cationic center. The photocatalytic activities of hybrids 1 and 2 were tested using the reduction of dichromate (Cr2O72-) as a model reaction under UV irradiation. A 99% photocatalytic reduction of Cr2O72- with a rate constant of 0.0305 min(-1) was achieved with hybrid 2, while only a 67% reduction with a rate constant of 0.0062 min(-1 )was observed with hybrid 1 in 180 minutes. The better catalytic performance of hybrid 2 may be correlated to the larger atomic radii of Se than S, which helps in better stabilizing the photogenerated electron-hole (e(-)-h(+)) pair on the POM cluster by polarizing its lone pair more efficiently compared to S. The catalytic recyclability was tested for up to 4 cycles using hybrid 2, and up to 98% reduction was obtained even after the 4(th) cycle. Recyclability tests and control experiments also indicated the generation of some elemental Se through possible cleavage of some C-Se bonds of MDPSe under prolonged UV exposure during catalysis, and the Se thus generated was found to contribute to the catalytic reduction of dichromate. This study, therefore, opens new avenues for aryl selenonium moieties and their POM hybrids for potential catalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据