4.7 Article

Dynamic risk assessment of chemical process systems using the System-Theoretic accident model and process approach (STAMP) in combination with cascading failure propagation model (CFPM)

期刊

SAFETY SCIENCE
卷 171, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ssci.2023.106375

关键词

STAMP; Fault propagation; Cascading failure propagation model (CFPM); Risk accumulation

向作者/读者索取更多资源

To maintain continuous production, chemical plant operators may choose to ignore or handle faults online rather than shutting down process systems. However, the interaction and interdependence between components in a digitalized process system are significant, and faults can propagate to downstream nodes, potentially leading to risk accumulation and major accidents. This study proposes a dynamic risk assessment method that integrates the system-theoretic accident model and process approach (STAMP) with the cascading failure propagation model (CFPM) to model the risk accumulation process. The proposed method is applied to a Chevron refinery crude unit and demonstrates its effectiveness in quantifying the process of risk accumulation and providing real-time dynamic risk profiles for decision-making.
To maintain continuous production, chemical plant operators may ignore faults or handle faults online rather than shutting down process systems. However, interaction and interdependence links between components in a digitalized process system are substantial. Thus, faults will be propagated to downstream nodes, potentially leading to risk accumulation and major accidents. However, limited attention has been paid to this type of risk. To model the risk accumulation process, a dynamic risk assessment method is proposed by integrating the system-theoretic accident model and process approach (STAMP) and the cascading failure propagation model (CFPM). Firstly, STAMP is used to model and analyze the system safety of a process system. Two CFPMs are then proposed to measure risk accumulation under two different engineering situations. The proposed method is applied to the Chevron Richmond refinery crude unit and its associated upstream process. The results show that the proposed approach can effectively quantify the process of risk accumulation. This method can generate a real-time dynamic risk profile to support auxiliary decision-making.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据