4.6 Article

Enhancing stiffness and damping characteristics in nacreous composites through functionally graded tablet design

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2023.106242

关键词

Nacreous composites; Functionally graded tablet; Damping property; Stiffness; Optimization

向作者/读者索取更多资源

The study proposes incorporating functionally graded tablets into nacreous composites to enhance both stiffness and damping properties. Analytical formulae and numerical experiments demonstrate the effectiveness of this design, surpassing existing homogeneous composites in performance.
Nacreous composites offer significant potential for applications in structural damping materials, which require simultaneous high stiffness and damping properties. In this study, we propose that the incorporation of functionally graded tablets into nacreous composites can further enhance both stiffness and damping energy dissipation concurrently. Analytical formulae for the loss modulus, storage modulus, and loss factor, validated through a series of finite element analyses, were derived to investigate the effects of variations in tablet modulus, structural geometry, and constituent properties. Our analyses demonstrate that designing a parabolic modulus distribution in the tablets can yield optimal strengthening and damping results. Furthermore, the characteristic modulus variation degree, overlap length, and frequency emerged from the systematic optimization of loss and storage moduli. Additionally, numerical experiments and model predictions demonstrate that the loss modulus of functionally graded nacreous composites surpasses the predetermined design limit and is five times greater than that of existing homogeneous nacreous composites. Combining the developed theoretical model presented here with advanced 3D printing techniques would offer effective guidelines for designing and fabricating high-performance bio-inspired structural damping composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据