4.7 Article

Iterative quantum algorithm for combinatorial optimization based on quantum gradient descent

期刊

RESULTS IN PHYSICS
卷 56, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.rinp.2023.107204

关键词

Iterative quantum algorithm; Combinatorial optimization; Quantum gradient descent; Ising Hamiltonian; Linear combination of unitaries; MaxCut problem

向作者/读者索取更多资源

The paper introduces an iterative quantum algorithm based on quantum gradient descent to solve combinatorial optimization problems, verifying the effectiveness and robustness of the algorithm through numerical simulations and comparison with other algorithms. Experimental results on a real quantum computer also demonstrate the feasibility and performance of the algorithm.
Combinatorial optimization has wide and high-value applications in many fields of science and industry, but solving general combinatorial optimization problems is non-deterministic polynomial time (NP) hard. Many such problems can be mapped onto the ground-state-search problems of the Ising model. Here, an iterative quantum algorithm based on quantum gradient descent to solve combinatorial optimization problems is introduced, where the initial state of a quantum register evolves over several iterations to a good approximation of the Ising-Hamiltonian ground state. We verified the effectiveness of the proposed algorithm in solving the MaxCut problem for different types of undirected graphs by numerical simulations, and analyzed the robustness of the algorithm to errors by simulating random error and Gaussian error. We compared the performance of the algorithm with the quantum approximate optimization algorithm, and the results indicate that the proposed algorithm has comparable convergence performance. We also verified the feasibility of the algorithm by conducting experiments on a real quantum computer through the quantum cloud platform. Our work provides a potential method for solving combinatorial optimization problems on future quantum devices without the use of complex classical optimization loops.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据