4.7 Article

PmxPred: A data-driven approach for the identification of active polymyxin analogues against gram-negative bacteria

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107681

关键词

Polymyxin analogues; Bioinformatics; Machine learning; Deep learning; Feature engineering; Predictors

向作者/读者索取更多资源

In this study, we developed a machine learning framework called PmxPred for predicting polymyxin analogues with high antimicrobial activity against Gram-negative bacteria. The framework achieved good performance on multiple datasets, outperforming traditional transfer learning methods.
The multidrug-resistant Gram-negative bacteria has evolved into a worldwide threat to human health; over recent decades, polymyxins have re-emerged in clinical practice due to their high activity against multidrugresistant bacteria. Nevertheless, the nephrotoxicity and neurotoxicity of polymyxins seriously hinder their practical use in the clinic. Based on the quantitative structure-activity relationship (QSAR), analogue design is an efficient strategy for discovering biologically active compounds with fewer adverse effects. To accelerate the polymyxin analogues discovery process and find the polymyxin analogues with high antimicrobial activity against Gram-negative bacteria, here we developed PmxPred, a GCN and catBoost-based machine learning framework. The RDKit descriptors were used for the molecule and residues representation, and the ensemble learning model was utilized for the antimicrobial activity prediction. This framework was trained and evaluated on multiple Gram-negative bacteria datasets, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and a general Gram-negative bacteria dataset achieving an AUROC of 0.857, 0.880, 0.756, 0.895 and 0.865 on the independent test, respectively. PmxPred outperformed the transfer learning method that trained on 10 million molecules. We interpreted our model well-trained model by analysing the importance of global and residue features. Overall, PmxPred provides a powerful additional tool for predicting active polymyxin analogues, and holds the potential elucidate the mechanisms underlying the antimicrobial activity of polymyxins. The source code is publicly available on GitHub (https://github.com/yanwu2 0/PmxPred).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据