4.4 Article

Comparative analysis of kinetic realizations of insulin signaling

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 577, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2023.111672

关键词

Insulin resistance; Insulin signaling; Kinetic realization; Reaction network; Subnetwork

向作者/读者索取更多资源

This study compares insulin signaling in healthy and type 2 diabetes states using reaction network analysis. The results show similarities and differences between the two conditions, providing insights into the mechanisms of insulin resistance, including the involvement of other complexes, less restrictive interplay between species, and loss of concentration robustness in GLUT4.
Several studies have developed dynamical models to understand the underlying mechanisms of insulin signaling, a signaling cascade that leads to the translocation of glucose, the human body's main source of energy. Fortunately, reaction network analysis allows us to extract properties of dynamical systems without depending on their model parameter values. This study focuses on the comparison of insulin signaling in healthy state (INSMS or INSulin Metabolic Signaling) and in type 2 diabetes (INRES or INsulin RESistance) using reaction network analysis. The analysis uses network decomposition to identify the different subsystems involved in insulin signaling (e.g., insulin receptor binding and recycling, GLUT4 translocation, and ERK signaling pathway, among others). Furthermore, results show that INSMS and INRES are similar with respect to some network, structo-kinetic, and kinetic properties. Their differences, however, provide insights into what happens when insulin resistance occurs. First, the variation in the number of species involved in INSMS and INRES suggests that when irregularities occur in the insulin signaling pathway, other complexes (and, hence, other processes) get involved, characterizing insulin resistance. Second, the loss of concordance exhibited by INRES suggests less restrictive interplay between the species involved in insulin signaling, leading to unusual activities in the signaling cascade. Lastly, GLUT4 losing its absolute concentration robustness in INRES may signify that the transporter has lost its reliability in shuttling glucose to the cell, inhibiting efficient cellular energy production. This study also suggests possible applications of the equilibria parametrization and network decomposition, resulting from the analysis, to potentially establish absolute concentration robustness in a species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据