4.7 Article

Single-Step PEDOT Deposition by oCVD for ITO-Free Deep Blue OLEDs

期刊

ACS APPLIED POLYMER MATERIALS
卷 5, 期 12, 页码 10205-10216

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsapm.3c02019

关键词

oCVD; PEDOT; OLED; ITO-free; solvent-free TCE

向作者/读者索取更多资源

Organic light-emitting diodes (OLEDs) are emerging technologies for lighting and display applications. Researchers have investigated the use of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films as a potential substitute for indium tin oxide (ITO) in OLEDs. The deposition of PEDOT thin films using a single-step dry method demonstrated improved performance compared to ITO.
Organic light-emitting diodes (OLEDs) are emerging technologies for potential lighting and display applications. Transparent conductive electrodes (TCEs) play a crucial role in enabling the functionality and increased performance of these particular devices. Despite their widespread use, indium tin oxide (ITO) thin films have several significant drawbacks, including material scarcity, high costs associated with both materials and fabrication processes, and limited flexibility. To address these issues, we thoroughly investigate the deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films as a promising alternative to ITO using a single-step and dry method named oxidative chemical vapor deposition (oCVD). The impact of increasing the substrate temperature from 110 to 190 degrees C on the film's structure and properties was revealed with an increase in the film conductivity to over 1600 S/cm at 170 degrees C and a total transmittance of 97% in the visible range. This increase was attributed to a change in the molecular structure of the conjugated polymer from benzoid to quinoid as revealed by Raman and FTIR measurements. The XPS results demonstrated an increase in the doping ratio with Cl-containing species and a reduction of impurities. GIXRD, HR-TEM, and AFM measurements indicated a smooth surface and a highly face-on orientation for all temperatures. The optimized TCE layers were successfully integrated into deep blue OLED devices emitting at 436 nm with stable color Commission Internationale de l'Energie (CIE) coordinates of (0.15, 0.08) under variation of the applied current. A satisfactory performance (72.1 cd/m(2) and 0.86 W/srm(2) at 10 mA cm(-2)) and an external quantum efficiency (EQE) of 1.04% were achieved. These results are quite promising, as OLEDs based on PEDOT as a TCE have demonstrated slightly better output performance in terms of luminance and radiance, with an increase in EQE by a factor of 1.7, compared to the reference device based on ITO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据