4.7 Article

Enhancing ion mobility spectrometry performance through a programmable ion swarm shaping method based on Bradbury-Nielsen gates

期刊

TALANTA
卷 269, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2023.125396

关键词

Ion mobility spectrometry; Bradbury-nielsen gate; Ion swarm shape; Discrimination effect reduction

向作者/读者索取更多资源

This article proposes a novel method to address the limitations of the conventional ion gate in IMS systems, which effectively reduces trailing edge deformation, improves resolving power and signal intensity, and achieves reverse discrimination effect.
The ion gate is a critical element in drift tube ion mobility spectrometry (IMS) as it directly influences the resolving power and sensitivity of the system. However, the conventional Bradbury-Nielsen gate (BNG) often leads to deformation of the ion swarm shape, resulting in reduced resolving power and significant discrimination effects. To address these limitations, we propose a novel method that incorporates a cutting phase following the gate opening. This approach effectively reduces trailing edge deformation, resulting in a maximum resolving power of over 100 and increased signal intensity. Additionally, this method maintains high resolving power even during longer gate opening times. Remarkably, this method not only significantly reduces the mobility discrimination effect but also enables the achievement of reverse discrimination by adjusting the duration of the cutting phase. Consequently, it demonstrates the potential to selectively amplify the peak height of target ions. Our method offers straightforward implementation across all IMS systems utilizing the BNG, thereby significantly improving system performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据