4.7 Article

Optimizing coupling layer and superstrate thickness in attachable acoustofluidic devices

期刊

ULTRASONICS
卷 137, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ultras.2023.107202

关键词

Acoustic superstrate; Acoustofluidic devices; Attachable devices; Coupling materials; Transducer

向作者/读者索取更多资源

Superstrate-based acoustofluidic devices offer advantages of cost, interchangeability and prevention of contamination between samples. This study analyzes the coupling layers and superstrate dimensions for efficient sound transmission, finding that a superstrate thickness of 0.55 times the acoustic wavelength maximizes acoustic coupling.
Superstrate-based acoustofluidic devices, where the fluidic elements are reversibly coupled to a transducer rather than bonded to it, offer advantages for cost, interchangeability and preventing contamination between samples. A variety of coupling materials can be used to transmit acoustic energies into attachable superstrates, though the dimensions and material composition of the system elements are not typically optimized. This work analyzes these coupling layers for bulk wavefront transmission, including water, ultrasound gel and polydimethylsiloxane (PDMS), as well as the material makeup and thickness of the superstrate component, which is commonly comprised of glass, quartz or silicon. Our results highlight the importance of coupling layer and superstrate dimensions, identifying frequencies and component thicknesses that maximize transmission efficiency. Our results indicate that superstrate thicknesses 0.55 times the acoustic wavelength result in maximal acoustic coupling. While various coupling layers and superstrate materials are capable of similar acoustic energy transmission, the inherent dimensional stability of the PDMS coupling layers, somewhat less common in superstrate work compared to liquid-based agents, presents advantages for practically maximizing acoustic efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据