4.2 Article

Biopatterning of 3D Cellular Model by Contactless Magnetic Manipulation for Cardiotoxicity Screening

期刊

TISSUE ENGINEERING PART A
卷 -, 期 -, 页码 -

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2023.0197

关键词

3D cell culture; magnetic biopatterning; contactless manipulation; cardiac tissue engineering; DOX-induced cardiotoxicity

向作者/读者索取更多资源

Patterning cells using magnetic manipulation is a rapid and cost-effective method to create three-dimensional cell culture models. This study introduces a new approach using a bioink to pattern cells and successfully fabricates 3D cardiac structures. The developed model shows higher resistance to drug exposure compared to conventional two-dimensional cell culture.
Patterning cells to create three-dimensional (3D) cell culture models by magnetic manipulation is a promising technique, which is rapid, simple, and cost-effective. This study introduces a new biopatterning approach based on magnetic manipulation of cells with a bioink that consists alginate, cells, and magnetic nanoparticles. Plackett-Burman and Box-Behnken experimental design models were used to optimize bioink formulation where NIH-3T3 cells were utilized as a model cell line. The patterning capability was confirmed by light microscopy through 7 days culture time. Then, biopatterned 3D cardiac structures were formed using H9c2 cardiomyocyte cells. Cellular and extracellular components, F-actin and collagen Type I, and cardiac-specific biomarkers, Troponin T and MYH6, of biopatterned 3D cardiac structures were observed successfully. Moreover, Doxorubicin (DOX)-induced cardiotoxicity was investigated for developed 3D model, and IC50 value was calculated as 8.1 mu M for biopatterned 3D cardiac structures, which showed higher resistance against DOX-exposure compared to conventional two-dimensional cell culture. Hereby, developed biopatterning methodology proved to be a simple and rapid approach to fabricate 3D cardiac models, especially for drug screening applications. Impact statementContactless manipulation and cell patterning techniques provide rapid and cost-effective three-dimensional (3D) cell culture model formation for tissue engineering applications. The present study introduces a new methodology that comprised alginate-based bioink to pattern cells via contactless magnetic manipulation to fabricate 3D cardiac structures. The developed cardiac model was evaluated in terms of Doxorubicin-induced cardiotoxicity and biopatterned 3D cardiac structures were found more resistant to drug exposure compared to two-dimensional control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据