4.6 Article

Variation in properties of double-walled zigzag and armchair silicon nanotubes depending on SW defects and applied electric fields by SCC-DFTB method

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2023.107988

关键词

Silicon nanotubes; Double-walled; Stone-wales; SCC-DFTB

向作者/读者索取更多资源

The geometric structure and electrical properties of zigzag and armchair DWSiNT perfect tubes with different Stone-Wales defects were simulated using the SCC-DFTB method. It was found that the atomic arrangement, stability, energy gap, and charge distribution strongly depend on the type of tube. The effects of strong and weak electric fields on the tubes were also investigated, showing different impact on stability and energy gap. These findings have implications for future experimental studies.
The geometric structure and electrical properties of the zigzag DWSiNT (8,0)@(12,0) and armchair DWSiNT (5,5)@(7,7) perfect tubes with the same diameter are simulated by self-consistent charge density functional tight binding method (SCC-DFTB). We considered the defective tubes by introducing three types of Stone-Wales (SW) defects, and further investigated the impact of both strong and weak electric fields on these defective tubes. Calculations demonstrate that the atomic arrangement regularity, degree of buckling, stability, energy gap, and charge distribution strongly depend on the type of perfect tubes. Following the introduction of the SW defects, the symmetry of the tubes disappeared, and there is a obvious atomic aggregation occurring at the defects. The armchair tubes demonstrate a higher stability compared to zigzag tubes and all exhibit metallic properties. SWII and SWIII defects in zigzag tubes result in a transition from semiconductor to semi-metallic properties. The number of charge transfer increases, and the degree of atomic aggregation is more dispersed. The effect of applied electric field strength on perfect zigzag tubes is more obvious. The weak field has minimally impacted on the stability, and the strong field makes the stability improved to some extent. The presence of a strong field caused the energy gap values of (8,0)@(12,0) tube decrease sharply, and all tubes are transformed into semimetal or metal. The weak electric field has a more pronounced regulation of band gap within the range of 0 V/nm - 0.3 V/nm on the inner tube. The consequences of this investigation can certainly be helpful in future experimental studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据