4.7 Article

Sustained drug release behavior of captopril-incorporated chitosan/ carboxymethyl cellulose biomaterials for antihypertensive therapy

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.128087

关键词

Chitosan/carboxymethyl cellulose biomaterials; Captopril; Release behavior; Angiotensin-converting enzyme inhibitory; activity

向作者/读者索取更多资源

The study synthesized CTP-incorporated biomaterials for antihypertensive therapy and found that these materials have excellent drug release capacity and significant inhibition effect on cardiovascular disease.
Captopril (CTP) is an oral drug widely used to treat high blood pressure and congestive heart failure. In this study, CTP-incorporated biomaterials for antihypertensive therapy were synthesized from chitosan, carboxymethyl cellulose, and plasticizers. The physicochemical properties of the prepared biomaterials were characterized using FE-SEM, FT-IR analysis, and physical properties. CTP release experiments were carried out in buffer solutions at various pH values and temperatures. Results indicated that above 99.0 % of CTP was released within 180 min. Optimization of the experimental conditions for CTP release was analyzed by using response surface methodology (RSM). Results of CTP release through artificial skin indicated that CTP was continuously released above 95.0 % from the prepared biomaterials for 36.0 h. The CTP release mechanisms into a buffer and through artificial skin followed pseudo-Fickian diffusion mechanism and non-Fickian diffusion mechanisms, respectively. Moreover, angiotensin-converting enzyme (ACE) inhibition (related to cardiovascular disease) via the released CTP clearly reveals that the prepared biomaterials have a high potential as a transdermal drug delivery agent in antihypertensive therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据