4.7 Article

An iterative path compensation method for double-sided robotic roller forming of compact thin-walled profiles

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rcim.2023.102689

关键词

Robot stiffness deformation; Path compensation; Laser -assisted forming; Bending radius; Flexible forming

向作者/读者索取更多资源

In this study, a double-sided robotic roller forming process was developed to form ultrahigh strength steels to thin-walled profiles. Synchronized laser heating and iterative path compensation method were used to reduce forming forces and achieve high-precision forming.
High-precision robotic forming of ultrahigh strength materials is challenging due to the significant stiffness deformation of industrial robots. In this work, a double-sided robotic roller forming process was developed to form ultrahigh strength steels to thin-walled profiles. Synchronized laser heating prior to plastic deformation was initially introduced as a means of reducing the required forming forces. Considering the varying forming forces during the compensation of stiffness-deformation-induced path deviation, an iterative path compensation method was proposed and implemented to enable continuous adjustments of path compensation values, utilizing a robot stiffness model and the correlation between compensation values and forming forces. Results show that laser heating has a significant positive effect on reducing springback angle due to the decrease of forming forces, while the path compensation facilitates the forming of compact thin-walled profiles with sharp bending radii. It is validated that the proposed method for iterative path compensation is conducive to the determination of the optimized path compensation values with limited iterations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据