4.7 Article

Improved deep bidirectional recurrent neural network for learning the cross-sensitivity rules of gas sensor array

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 401, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2023.134996

关键词

Gas sensor array; Deep BRNN; Bidirectional learning ability; Cross-sensitivity; Pattern recognition

向作者/读者索取更多资源

In this study, an improved deep BRNN model was developed to solve the cross-sensitivity problem of chemical gas sensor array, achieving a recognition accuracy of 98.93%.
Cross-sensitivity among chemical gas sensors leads to inaccurate identification of mixed gas. Pattern recognition algorithms are usually applied to improve the recognition accuracy. However, the abilities of current methods to process sequence property of response data are not strong enough. Especially, they cannot deal with bidirectional cross-sensitive issue, leading to recognition errors. Bidirectional Recurrent Neural Network (BRNN) could well learn bidirectional association features between word sequences in natural language processing field, which is similar to the bidirectional interaction of cross-sensitivity. In this study, an improved deep BRNN model was constructed to solve the cross-sensitivity problem of chemical gas sensor array. A chemical gas sensor array with four units was fabricated and response data was thoroughly obtained. Data preprocessing methods, model structure hyperparameters and optimizers were studied. Finally, an improved deep BRNN model was developed with 3 layers and 100 hidden_size, training with Adamax optimizer. A recognition accuracy of 98.93% was achieved, attributing to the model's excellent learning ability to the bidirectional cross-sensitivity rules among gas sensors. This improved BRNN model provided a novel idea to eliminate cross-sensitivity, exhibiting good potential for recognizing mixed gas analyte accurately.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据