4.6 Article

An efficient framework for optic disk segmentation and classification of Glaucoma on fundus images

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2023.105770

关键词

Glaucoma; CNN; Optic Disk segmentation; Transfer learning; SLIC; Normalized graph cut

向作者/读者索取更多资源

This research investigates various segmentation and classification techniques for accurately segmenting the Optic Disk and classifying normal and glaucomatous eyes. The proposed method shows potential clinical application and benefits healthcare facilities with limited resources.
Accurately segmenting the Optic Disk is a crucial step in classifying Glaucoma using Fundus images. Machine learning and artificial intelligence techniques are widely used in Glaucoma detection, and the main indicators observed in Fundus images are the presence of Papillary Atrophy, Cup to Disc Ratio values, diminishing Neural Retinal Rim (NRR), the Inferior Superior Nasal Temporal (ISNT) rule, and Cup Diameter. In this research, we investigated various segmentation and classification techniques that can be applied to Optic disk segmentation and classification of normal and glaucomatous eyes. The proposed method will be beneficial to clinicians and healthcare workers in facilities with limited resources. In this paper, histogram processing is used to determine the type of image, and based on this information; we decide whether the image requires segmentation. Some datasets in the standard dataset contain complete retinal images while others include segmented optic disks. The segmented images are directly given as input for classification using the proposed Convolutional Neural Network (CNN). For complete retinal images, segmentation is performed using the Simple Linear Iterative clustering (SLIC) and normalized graph cut algorithm. The proposed framework's performance is compared with that of pretrained neural networks, including VGG19, InceptionV3, and ResNet50V2, using major metrics. We trained and tested these architectures with 3115 images from six standard datasets. Our proposed framework outperforms all with an accuracy of 96.33 %.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据