4.7 Article

Exploiting geospatial data of connectivity and urban infrastructure for efficient positioning of emergency detection units in smart cities

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compenvurbsys.2023.102054

关键词

Geospatial data processing; Emergency detection; Sensors deployment; Wireless networking; Urban computing; Barcelona

向作者/读者索取更多资源

This article explores the use of multi-sensor Emergency Detection Units (EDUs) to improve urban emergency response. By leveraging data-driven approaches and geospatial data, the positioning of these units can be optimized. Additionally, the coverage area of existing networks is modeled, and the EDUs are fine-tuned based on connectivity requirements to enhance the effectiveness of emergency management systems.
The detection of critical situations through the adoption of multi-sensor Emergency Detection Units (EDUs) can significantly reduce the time between the initial stages of urban emergencies and the actual responses to relieve its negative effects, usually through the rescuing of endangered people, the attending to eventual victims, and the mitigating of its causes. However, although the benefits of such units are well known, their proper positioning in a city is challenging when considering a limited set of available units. In this sense, data-driven approaches can be leveraged to provide a better perception of the urban environments under consideration, allowing emergency management systems to be tailored to the specificities of a target city, thus improving the positioning of EDUs. This article proposes the processing of geospatial data of emergency-related urban infrastructure to support the computing of risk zones in a city, which is retrieved from the OpenStreetMap database together with the map of streets within a defined area. Since risk zones indirectly indicate the proportional number of detection units to be deployed, for each configuration setting of the EDUs, we propose an algorithm that computes the positions for such units only on streets, in a balanced way. Furthermore, considering that EDUs are expected to report detected emergencies through a wireless connection, we have also modelled the coverage area of existing networks in a city, which is also processed according to a suitable dataset. The proposed algorithm performs a fine-grained positioning of EDUs based on the number of active networks, flexibly favouring the EDUs' connectivity re-quirements such as reliability, throughput, latency, and transmission costs according to the actual demands of any urban emergency management system. Experimental results with real data demonstrated the applicability of the proposed mathematical model and the associated algorithm, reinforcing its practical application for the planning and construction of smart cities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据