4.2 Article

Complex wing spar design in carbon fiber reinforced composite for a light aerobatic aircraft

期刊

MECHANICS & INDUSTRY
卷 17, 期 6, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/meca/2016032

关键词

Composite; wing; structures testing; numerical simulations; acoustic emission

资金

  1. FEDER
  2. Etat-FRED
  3. Poitou-Charentes

向作者/读者索取更多资源

The challenge concerns the realization of the lightest composite wing for E-FAN prototype 1.0 aircraft. This wing must be dismantled and must support critical loads for aerobatics. The bonding conception between the composites parts must transfer the high loads. This article presents a methodology to design a multi-materials structure with a complex geometry of varying thickness. So, the mechanical behavior must be known for the structure, as well as their weaknesses which can involve the rupture. For that, numerical simulations are elaborated in taken into account the constraints inherent in the manufacturing processes and DGAC's requirements (Direction Generale de l'Aviation Civile, French Authorities for Civil Aviation). The predictive character of these models is realized by numerical and experimental results correlations in order to optimize the numerical model accuracy. Indeed, the complete spar's sizing is validated by static rupture tests. This last point requires the building of a special testing equipment which is able to generate a load compared to the one applied in flight. Moreover, the testing metrology is used to quantify the accuracy level of models. Wing spar, central spar and central/wing bonding are qualified by DGAC for flight.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据