4.8 Article

Strongly-Interacted NiSe2/NiFe2O4 Architectures Built Through Selective Atomic Migration as Catalysts for the Oxygen Evolution Reaction

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202310266

关键词

composites; exsolution; inorganic solid; strong interaction

向作者/读者索取更多资源

This study demonstrates the construction of strongly-interacted composites through selective exsolution of active materials and reveals their electronic structure characteristics using spatially resolved techniques, exhibiting high performance in the oxygen evolution reaction.
The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical M & ouml;ssbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm(-2) for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据