4.8 Article

Microenvironment responsive charge-switchable nanoparticles act on biofilm eradication and virulence inhibition for chronic lung infection treatment

期刊

JOURNAL OF CONTROLLED RELEASE
卷 365, 期 -, 页码 219-235

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2023.11.032

关键词

Pseudomonas aeruginosa; Biofilm; Virulence; Pulmonary infection; Nanoparticles

向作者/读者索取更多资源

Chronic pulmonary infection caused by Pseudomonas aeruginosa is a serious public health problem with high mortality rates. In this study, infection-microenvironment responsive nanoparticles were developed to eradicate biofilms and inhibit virulence. These nanoparticles showed promising results in treating chronic pulmonary infections.
Chronic pulmonary infection caused by Pseudomonas aeruginosa (P. aeruginosa) is a common lung disease with high mortality, posing severe threats to public health. Highly resistant biofilm and intrinsic resistance make P. aeruginosa hard to eradicate, while powerful virulence system of P. aeruginosa may give rise to the recurrence of infection and eventual failure of antibiotic therapy. To address these issues, infection-microenvironment responsive nanoparticles functioning on biofilm eradication and virulence inhibition were simply prepared by electrostatic complexation between dimethylmaleic anhydride (DA) modified negatively charged coating and epsilon-poly(L-lysine) derived cationic nanoparticles loaded with azithromycin (AZI) (DA-AZI NPs). Charge reversal responsive to acidic condition enabled DA-AZI NPs to successively penetrate through both mucus and biofilms, followed by targeting to P. aeruginosa and permeabilizing its outer/inner membrane. Then in situ released AZI, which was induced by the lipase-triggered NPs dissociation, could easily enter into bacteria to take effects. DA-AZI NPs exhibited enhanced eradication activity against P. aeruginosa biofilms with a decrease of >99.999% of bacterial colonies, as well as remarkable inhibitory effects on the production of virulence factors and bacteria re-adhesion & biofilm re-formation. In a chronic pulmonary infection model, nebulization of DA-AZI NPs into infected mice resulted in prolonged retention and increased accumulation of the NPs in the infected sites of the lungs. Moreover, they significantly reduced the burden of P. aeruginosa, effectively alleviating lung tissue damages and inflammation. Overall, the proposed DA-AZI NPs highlight an innovative strategy for treating chronic pulmonary infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据