4.7 Article

Dynamic behaviour of multi-layer composite against single and multiple

期刊

出版社

ELSEVIER
DOI: 10.1016/j.tafmec.2023.104189

关键词

Projectile impact; Multi-layer composite; Bunker design; Transmitted force; Dynamic fracture behaviour; Damage quantification

向作者/读者索取更多资源

In this work, a novel multi-layer composite structure is proposed for protective shelter design. The dynamic behavior and mechanical performance of the multi-layer composite under projectile impact loading are investigated. The proposed composite target demonstrates enhanced penetration resistance and lesser damage compared to its reinforced concrete monolayer counterpart. An analytical model is also developed to predict the forces transmitted to the lowest layer for design purposes.
In this work, a novel multi-layer composite structure has been proposed for its application in the design of protective shelters. The proposed work investigates the dynamic behaviour of a multi-layer composite under the action of single and multiple projectile impact loading. The target consists of soil, reinforced concrete, steel plate, high-density polyethylene and boulder-mixed cement mortar. It has been subjected to the projectile impact (single and multiple) of a 2.3 kg ogive-nose hard cylindrical projectile having a 50.80 mm diameter. The mechanical performance in terms of the velocity profile of the projectile, residual velocity, penetration depth, ballistic limit velocity, energy absorption and damage of the target has been quantified through a numerical framework. Further, equations have been formulated to determine the fracture material parameters associated with the Riedel-Hiermaier-Thoma (RHT) model to cater for varying strengths of concrete or similar materials. The proposed composite target has demonstrated enhanced penetration resistance and lesser damage compared to its reinforced concrete monolayer counterpart. The interaction between shock waves and the target's material characteristics lead to projectile ricocheting in multiple projectile impacts. Further, an analytical model has been developed to predict the forces transmitted to the lowest layer, which are essential for design purposes. The model has been proposed from the fundamentals using the concepts of impedance. The result derived from the theoretical formulation is in good agreement with the numerical results. Finally, the damage has been quantified to assess the extent of structural deterioration in multi-layer targets, emphasizing the relationship between energy absorption ratio and damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据