4.5 Article

Enhancing hyperspectral remote sensing image classification using robust learning technique

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jksus.2023.102981

关键词

Backpropagation with variable adaptive momentum; Principal component analysis; Hyperspectral image classification; Dimensionality reduction; Hyperspectral sensors

向作者/读者索取更多资源

This study provides a comprehensive analysis of the integration of hyperspectral sensors and artificial intelligence. It proposes a hybrid strategy that combines BPVAM with PCA for the classification of hyperspectral images and demonstrates that this model is efficient for hyperspectral sensor classification.
Advanced sensor tech integrates into diverse applications, including remote sensing, robotics, and IoT. Combining artificial intelligence (AI) with sensors enhances their capabilities, creating smart sensors, revolutionizing remote sensing and Internet of Things (IoT). This synergy forms a potent technology in the field. This study carries out a comprehensive analysis of the progress made in Hyperspectral sensors and AI-based classification techniques that are employed in remote sensing fields that utilize hyperspectral images. The classification of images obtained from Hyperspectral Sensors (HSS) has emerged as a prominent research subject within the domain of remote sensing. HSS offer a wealth of information across numerous spectral bands, supporting diverse applications such as land cover classification, environmental monitoring, agricultural assessment, change detection, and more. However, the abundance of data present in HSS also poses the challenge called the curse of dimensionality. The reduction of data dimensionality is crucial before applying any machine learning model to achieve optimal results. The present study introduces a new hybrid strategy combining the Back-Propagation algorithm with a variable adaptive momentum (BPVAM) and principal component analysis (PCA) for the purpose of classifying hyperspectral images. PCA is first applied to obtain an optimal set of discriminative features by eliminating highly correlated and redundant features. These features are then fed into the BPVAM model for classification. The addition of the momentum term in the weight update equation of the backpropagation algorithm helped achieve faster convergence with high accuracy. The proposed model was subjected to evaluation through experiments conducted on two benchmark datasets. These results indicated that the hybrid model based on BPVAM with PCA is an efficient technique for HSS classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据