4.7 Article

A clustering-enhanced potential-based reduced order homogenization framework for nonlinear heterogeneous materials

期刊

出版社

ELSEVIER
DOI: 10.1016/j.euromechsol.2023.105190

关键词

Nonlinear materials; Homogenization; Reduced order model; Data-driven; Clustering analysis

向作者/读者索取更多资源

This paper proposes a data-driven approach to improve the efficiency of computational homogenization for nonlinear hyperelastic materials. By combining clustering analysis, Proper Orthogonal Decomposition (POD), and efficient sampling, a reduced order model is established to accurately predict elastoplasticity under monotonic loadings. The numerical results show a significant acceleration factor compared to a purely POD-based model, which greatly improves the applicability for structural analysis.
This paper proposes a data-driven approach to improve the efficiency of computational homogenization for nonlinear hyperelastic materials with different microstructures in a small strain context. By combining clustering analysis and Proper Orthogonal Decomposition (POD) with efficient sampling, a reduced order model is established to accurately predict elastoplasticity under monotonic loadings. The microscopic RVE is spatially divided into multiple clusters using the k-means clustering algorithm during the offline phase. As suggested in Kunc and Fritzen (2019a), the reduced order model is constructed using reduced bases of deformation gradient fluctuations on the microscale. In contrast to the conventional displacement-based approach, deformation gradient fluctuations are employed to generate the POD snapshots. To improve the prediction accuracy and reduce the cost of offline computation, the energy minimum point set generation method proposed by Kunc and Fritzen (2019b) is employed. Numerical results show a acceleration factor in the order of 10-100 compared to a purely POD-based model can be archived, which significantly improves the applicability for structural analysis, while maintaining a sufficient accuracy level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据