4.8 Article

Nickel Single-Atom Catalyst Boosts Electrochemiluminescence of Graphitic Carbon Nitride for Sensitive Detection of HBV DNA

期刊

ANALYTICAL CHEMISTRY
卷 95, 期 49, 页码 18207-18214

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.3c03989

关键词

-

向作者/读者索取更多资源

This study successfully applied nickel single-atom catalysts (Ni SACs) in the graphitic carbon nitride (g-C3N4)-H2O2 electrochemiluminescence (ECL) system and significantly enhanced its cathodic emission. The developed system was also able to detect hepatitis B virus (HBV) DNA with excellent performance.
Owing to excellent catalytic activity, single-atom catalysts (SACs) have recently attracted considerable research interest in the electrochemiluminescence (ECL) field. However, the applications of SACs are mostly limited to conventional luminol ECL system. Hence, it is necessary to explore the application of SACs in more ECL systems. In this work, nickel single-atom catalysts (Ni SACs) were successfully applied in the graphitic carbon nitride (g-C3N4)-H2O2 ECL system to significantly enhance its cathodic emission. Notably, g-C3N4 acted not only as an ECL luminophore but also as a support to anchor Ni SACs. Ni SACs can significantly activate H2O2 to produce abundant OH center dot radicals for enhancing the cathodic ECL emission of g-C3N4. Ni SACs-anchored g-C3N4 (Ni SACs@g-C3N4) had a 10-fold enhanced ECL intensity as compared to g-C3N4. Finally, the Ni SACs@g-C3N4-H2O2 ECL system was developed to detect hepatitis B virus (HBV) DNA by incorporating an entropy-driven DNA walking machine-assisted CRISPR-Cas12a amplification strategy. The constructed biosensor exhibited excellent detection performance for HBV DNA with a limit of detection as low as 17 aM. This work puts forward a new idea for enhancing the cathodic ECL of g-C3N4-H2O2 and expands the application of SACs in the ECL system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据