4.3 Article

Effects of ontogeny and oiling on the thermal function of southern sea otter (Enhydra lutris nereis) fur

期刊

CONSERVATION PHYSIOLOGY
卷 11, 期 1, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/conphys/coad095

关键词

Development; insulation; lanugo; pelage; thermal conductivity; thermal resistance

向作者/读者索取更多资源

During the evolution of marine mammals, fur has been replaced with blubber for most species, but sea otters still rely on their dense pelage for insulation. This study found that sea otters of all ages are vulnerable to the effects of oiling, and young otters are more susceptible. Body size and age play a more important role in the thermal abilities of sea otters than previously thought.
During the evolution of most marine mammals, fur as an insulator has been replaced with more buoyant, energy storing and streamlining blubber. By contrast, the sea otter (Enhydra lutris) relies on insulation from its dense, air-trapping pelage, which differs morphologically between natal and adult stages. In this study, we investigated the ontogenetic changes in thermal function of southern sea otter (Enhydra lutris nereis) pelts in air, in water, and when saturated with crude oil. Pelt thermal conductivity, thickness, and thermal resistance were measured for six age classes: neonate (<1 month), small pup (1-2 months), large pup (3-5 months), juvenile (6 months-1 year), subadult (1-3 years), and adult (4-9 years). Thermal conductivity was significantly higher for pelts in air than in water, with oiled pelts exhibiting the highest values (P < 0.001). Oiled pelts had the lowest thermal resistance, which suggests that regardless of age, all sea otters are vulnerable to the effects of oiling (P < 0.001). To scale up our laboratory findings, we used a volume-specific geometric model of conductive heat transfer for a simplified sea otter body, representing all tested age classes and treatments. Neonates, small pups, and large pups are more vulnerable to the effects of oiling compared with older age classes (P < 0.0001) due to a higher surface area-to-volume ratio. These results are consistent with the known thermal conductance values for adult sea otter pelts, yet this is the first time such thermal differences have been demonstrated in young otters. Overall, body size and age play a more important role in the thermal abilities of sea otters than previously thought.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据