4.6 Article

A Prussian blue analog-based copper-aluminum layered double hydroxide for cesium removal from water: fabrication, density functional theory-based molecular modeling, and the adsorption mechanism

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 26, 期 2, 页码 1113-1124

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cp03879c

关键词

-

向作者/读者索取更多资源

A new type of adsorbent, PBA@CuAl-LDH, was successfully synthesized for the removal of radioactive Cs+ from wastewater. The adsorbent exhibited excellent adsorption performance, high maximum adsorption capacity, and recyclability. The adsorption mechanism of PBA@CuAl-LDH was revealed.
A new type of adsorbent, a Prussian blue analog-based copper-aluminum layered double hydroxide (PBA@CuAl-LDH), was successfully synthesized using a one-step method for the removal of radioactive Cs+ from wastewater. The adsorption performance, characteristics and the underlying adsorption mechanism of PBA@CuAl-LDH were systematically examined. The results showed that PBA@CuAl-LDH exhibited excellent adsorption performance, with a maximum adsorption capacity of 109.2 mg g-1. Over 85% of PBA@CuAl-LDH can be recycled, and the material exhibited only a 6.6% loss in adsorption performance. The adsorption process was well-fitted using the pseudo-second-order kinetic model and the Freundlich isotherm model, revealing the surface heterogeneity of the composite adsorbent. A molecular model of PBA@CuAl-LDH was constructed by combining density functional theory and multiple instrumental characterization techniques. Our results indicate that PBA crystals can be generated between layers and on the surface. Ion exchange was revealed as the main adsorption mechanism of Cs+ by PBA@CuAl-LDH. Specifically, the interstitial spaces of the PBA crystals generated between the layers and on the surface played an important role in ion exchange. These findings provide concrete theoretical support for radioactive pollution control and have significant value in directing the fabrication of cesium removal materials and their future engineering application. A new type of adsorbent, a Prussian blue analog-based copper-aluminum layered double hydroxide (PBA@CuAl-LDH), was successfully synthesized using a one-step method for the removal of radioactive Cs+ from wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据