4.8 Article

High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries

期刊

ADVANCED FIBER MATERIALS
卷 -, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1007/s42765-023-00347-8

关键词

Thick cathode; Polyhydroxyalkanoate binder; Nano-bridging; Conductive nano-fibrillar network; Lithium metal battery

向作者/读者索取更多资源

In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The thick cathode exhibited high rate capability and excellent cycling stability, and when paired with a thin Li metal anode, it achieved optimal energy performance.
Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (>= 250 mu m thickness and >= 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//t-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of similar to 25.3 mW h cm(-2), a high volumetric power density of similar to 1720 W L-1, and an outstanding specific energy of similar to 470 W h kg(-1) at only 6 mA h cm(-2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据