4.6 Article

Control of liquid crystals combining surface acoustic waves, nematic flows, and microfluidic confinement

期刊

SOFT MATTER
卷 20, 期 2, 页码 397-406

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sm01443f

关键词

-

向作者/读者索取更多资源

The optical properties of liquid crystals are typically controlled by electric fields. In this study, we investigate the effects of microfluidic flows and acoustic fields on the molecular orientation and optical response of nematic liquid crystals. We identify several previously unknown structures and explain them through calculations and simulations. These findings hold promise for the development of new systems combining sound, flow, and confinement.
The optical properties of liquid crystals serve as the basis for display, diagnostic, and sensing technologies. Such properties are generally controlled by relying on electric fields. In this work, we investigate the effects of microfluidic flows and acoustic fields on the molecular orientation and the corresponding optical response of nematic liquid crystals. Several previously unknown structures are identified, which are rationalized in terms of a state diagram as a function of the strengths of the flow and the acoustic field. The new structures are interpreted by relying on calculations with a free energy functional expressed in terms of the tensorial order parameter, using continuum theory simulations in the Landau-de Gennes framework. Taken together, the findings presented here offer promise for the development of new systems based on combinations of sound, flow, and confinement. The combination of flow and acoustic field applied to liquid crystals in confinement induces the formation of new structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据