4.5 Article

A novel exopolysaccharide from cold-adapted yeast Rhodotorula glutinis, along with structural, rheological, antioxidant, and antibiofilm properties

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13399-023-05208-3

关键词

Rhodotorula glutinis; Exopolysaccharide; Structural analysis; Rheology; Antioxidant; Antibiofilm

向作者/读者索取更多资源

In this study, a novel exopolysaccharide EPS-BMD26 produced by cold-adapted yeast Rhodotorula glutinis was structurally examined. EPS-BMD26 exhibited high thermal stability, antioxidant potential, and inhibitory activity against Staphylococcus aureus biofilm formation.
In the present study, a novel exopolysaccharide EPS-BMD26 produced by cold-adapted yeast Rhodotorula glutinis was structurally examined, along with its rheological, antioxidant, and antibiofilm properties. High-performance liquid chromatography (HPLC) analysis revealed glucose and galactose as two monosaccharide constituents. The functional groups within the EPS-BMD26 structure were detected by Fourier transform infrared (FT-IR) spectroscopy. The H-1 and C-13 nuclear magnetic resonance (NMR) spectra of EPS-BMD26 also confirmed its beta-D-glucan type with galactose residues with an average molecular weight of 118 kDa. Differential scanning calorimetry (DSC) analysis revealed that EPS-BMD26 had a high level of thermal stability, up to 326.16 degrees C. Scanning electron microscopy (SEM) analysis demonstrated that EPS-BMD26 had a porous microstructure with fissures. X-ray diffraction (XRD) analysis revealed its semi-crystalline nature. EPS-BMD26 showed moderate and concentration-dependent antioxidant potential recruiting different methods, including center dot OH, DPPH center dot, CUPRAC, and ABTS radical scavenging activities. Water-soluble EPS-BMD26 exhibited high water holding capacity of 190 +/- 0.22% with a water solubility index of 60.6 +/- 8.3%. At 1.25 mg mL(-1), EPS-BMD26 inhibited biofilm formation of Staphylococcus aureus ATCC 25923 by 79.5%. Rheological characterization revealed that the aqueous solution of EPS-BMD26 had shear thinning and pseudoplastic behavior. Given these properties, EPS-BMD26 may be a promising bio-hydrocolloid, antibiofilm agent, and food additive for industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据