4.7 Article

Boron-modified CuO as catalyst for electroreduction of CO2 towards C2+products

期刊

APPLIED SURFACE SCIENCE
卷 647, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2023.158919

关键词

Electroreduction of carbon dioxide; Boron-doping; CuO nanosheets

向作者/读者索取更多资源

In this study, CuO nanosheets were modified by in-situ boron doping to enhance the electroreduction performance of carbon dioxide. The optimized B-CuO NS catalyst exhibited a high faradaic efficiency of 54.78% for C2+ production at a specific potential. This work provides a rational design strategy for developing efficient catalysts for the electroreduction of CO2.
The development for electroreduction of carbon dioxide (CO2) is crucial for achieving sustainable cycles and carbon neutrality. Electroreduction of CO2 to C2+ products can not only mitigate environmental issues by reducing CO2 but also provide high-value chemicals for modern industry. In this study, we synthesized CuO nanosheets (CuO NS) via simple hydrothermal method and modified its electron structure by in-situ boron (B) doping to produce B-CuO NS catalyst. The XPS spectra revealed the successfully doping of B into CuO NS, which obviously changes the electron density of Cu on the surface of CuO NS. As a result, B-CuO NS displayed a higher performance for electroreduction of CO2 compared with original CuO NS. The optimized B-CuO NS catalyst exhibits a faradaic efficiency of 54.78 % for C2+ production at-1.2 V vs. reversible hydrogen electrode (RHE). Based on the structural characterization and Density Functional Theory (DFT) calculations, the introduction of B increases the charge density of Cu, which could process free electrons to adsorb *CO. Thanks to the easier adsorbing of *CO on B-CuO NS as well as the lower adsorption energy of *CO on Cu, C-C coupling reaction was promoted to produce more C2+ products. This work shows a rational design strategy for developing efficient catalysts for electroreduction of CO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据