4.7 Article

Bacterial eradication by a low-energy pulsed electron beam generator

期刊

BIOELECTROCHEMISTRY
卷 156, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2023.108593

关键词

-

向作者/读者索取更多资源

Low-energy electron beams (LEEB) are a safe and practical sterilization solution for industrial applications. To address the limitations of LEEB, we developed a low-energy pulsed electron beam generator (LEPEB) that can effectively and efficiently eradicate bacteria in a wide range of industrial applications.
Low-energy electron beams (LEEB) are a safe and practical sterilization solution for in-line industrial applications, such as sterilizing medical products. However, their low dose rate induces product degradation, and the limited maximal energy prohibits high-throughput applications. To address this, we developed a low-energy 'pulsed' electron beam generator (LEPEB) and evaluated its efficacy and mechanism of action. Bacillus pumilus vegetative cells and spores were irradiated with a 250 keV LEPEB system at a 100 Hz pulse repetition frequency and a pulse duration of only 10 ns. This produced highly efficient bacterial inactivation at a rate of >6 log(10), the level required for sterilization in industrial applications, with only two pulses for vegetative bacteria (20 ms) and eight pulses for spores (80 ms). LEPEB induced no morphological or structural defects, but decreased cell wall hydrophobicity in vegetative cells, which may inhibit biofilm formation. Single-and double-strand DNA breaks and pyrimidine dimer formation were also observed, likely causing cell death. Together, the unique combination of high dose rate and nanosecond delivery of LEPEB enable effective and high-throughput bacterial eradication for direct integration into production lines in a wide range of industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据