4.7 Article

Dynamic simulation of powder spreading processes toward the fabrication of metal-matrix diamond composites in selective laser melting

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrmhm.2023.106500

关键词

Selective laser melting; Metal-matrix diamond composites; Powder spreading processes; Discrete element method

向作者/读者索取更多资源

Selective laser melting (SLM) provides a novel method for the integrated production of structural and functional metal-matrix diamond composites in the field of diamond tools. In this study, a discrete element method model is developed to simulate the spreading process of diamond/CuSn composite powders. The findings reveal that adjusting the physical properties of diamond particles and process parameters can improve the powder bed quality and particle dynamics, leading to better performance of diamond tools.
A novel method for the integrated production of structural and functional metal-matrix diamond composites is provided by selective laser melting (SLM) in the field of diamond tools. However, the uneven distribution of diamond particles and loose packing density in the powder bed can easily result in poor performance of diamond tools. In this work, a discrete element method model of diamond/CuSn composite powders is developed to simulate blade-spreading processes. It investigates how powder bed quality and particle dynamics are affected by diamond powder physical properties and powder spreading process parameters. The findings reveal that coarse diamond particles exhibit strong force chains at low velocities, whereas contact force chains are weak for fine CuSn particles at high velocities. It shows that diamond particles with irregular shapes have poor diffusivity and spreadability due to the large friction and mechanical locking forces, which causes diamond particles segregation. Therefore, the packing density and uniformity of the powder bed are both improved by reducing the volume fraction and particle size of diamond particles. In addition, the powder bed quality is improved by increasing the powder layer thickness and decreasing the translational speed of the blade, which weakens the shear expansion and jamming of diamond particles. The results have some significance for optimizing powder spreading processes toward the production of metal-matrix diamond composites in SLM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据