4.5 Article

Enhancing the accuracy of physics-informed neural network surrogates in flash calculations using sparse grid guidance

期刊

FLUID PHASE EQUILIBRIA
卷 578, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fluid.2023.113984

关键词

Physics-informed neural networks; Flash calculations; Sparse grids; Compositional flows

向作者/读者索取更多资源

The sparse-grid guided PINN training method improves the accuracy of the PINN surrogate model by rearranging collocation points and reduces the training time complexity. Experimental results demonstrate its clear advantages in terms of convergence, stability, and accuracy.
Flash calculations pose a significant performance bottleneck in compositional-flow simulations. While sparse grids have helped mitigate this bottleneck by shifting it to the offline stage, the accuracy of the surrogate model based on physics-informed neural networks (PINN) is still inferior to that of the sparse grid surrogate in many cases. To address this issue, we propose the sparse-grid guided PINN training algorithm. This approach involves rearranging the collocation points using sparse grids at each epoch to capture changes in the residual space. By doing so, the PINN surrogate achieves the required accuracy using the fewest collocation points possible, thereby avoiding potential performance bottlenecks. Moreover, the training time complexity of the sparse-grid guided PINN training is significantly lower compared to the normal training while maintaining the same level of accuracy. Consequently, the sparse-grid guided PINN training method enhances the accuracy of the PINN surrogate with minimal computational overhead. During the experiments, a flash calculation of methane-propane mixture is conducted using a PINN surrogate, guided by the principles of sparse grids. The collective experimental observations underscore the clear advantages of employing sparse-grid guided PINN training, showcasing superior outcomes in terms of convergence, stability, and accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据