4.8 Review

Advances and challenges in single-site catalysts towards electrochemical CO2 methanation

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 -, 期 -, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ee02196

关键词

-

向作者/读者索取更多资源

This review summarizes the current research progress and future application prospects of electrochemical CO2 methanation on single-site catalysts (SSCs). It discusses the CO2 methanation mechanism, primary activity descriptors, coordination structure and design of SSCs, and several in situ characterization methods for tracking the structural changes in SSCs. This review provides insights into the further exploitation of SSCs for selective CO2 methanation and inspires the rational design of SSCs in electrochemical CO2 methanation research.
Electrochemical CO2 reduction to a valuable product is a sustainable and economical method towards carbon neutralization. Among the different products of the electrochemical CO2 reduction reaction (CO2RR), methane is an excellent energy carrier with a high combustion heat. However, for higher methane product selectivity it is crucial to avoid C-C coupling that leads to multi-carbon products. Thus, single-site catalysts (SSCs) with a single active site are ideal candidates. This review summarizes and discusses the current research progress and future application prospects of electrochemical CO2 methanation on SSCs. The CO2 methanation mechanism and primary activity descriptors are discussed in detail with an extensive overview of the coordination structure and design of SSCs, as well as their several in situ characterization methods for tracking the structural changes in SSCs. This review provides insights into the further exploitation of SSCs for selective CO2 methanation that inspires the rational design of SSCs in electrochemical CO2 methanation research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据