3.8 Review

Progress on carbon for electrochemical capacitors

期刊

BATTERY ENERGY
卷 2, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/bte2.20220021

关键词

activated carbon; electrochemical capacitors; electrodes; hybrid capacitors; polymer-based supercapacitors

向作者/读者索取更多资源

Electrochemical capacitors act as an energy storage device between dielectric capacitors and batteries. The performance of electrochemical supercapacitors (ESCs) depends on the characteristics of the electrode materials. Carbon materials play a crucial role in ESCs, but the energy density is limited. To improve energy density, researchers have incorporated different materials to enhance the overall performance of ESCs.
Electrochemical capacitors bridge the energy gap between conventional dielectric capacitors and batteries. The energy storage mechanism relies on purely physical electrical double-layer charging (EDL) and the faradaic process involving fast electrochemical redox reactions. These processes are strongly influenced by the surface area, porosity, electrical conductivity of the electrode materials, and the operating potential window of the electrolyte used. Carbonaceous materials play enormous roles in delivering outstanding electrochemical performance in electrochemical supercapacitors (ESCs) due to attractive material features suitable for high charge storage and release. However, due to the purely EDL-based charge storage mechanism in only carbon-based ESCs, the achievable energy density is low and hardly meets the high energy density demanding applications. Therefore, various carbon structures such as activated carbon, carbon nanotubes, graphene, and so on are designed and integrated with other hetero atoms or combined with transition metal oxides and polymer components to induce the pseudo-capacitive contributions via the electrochemical faradaic reaction. Thus, promoting the electrochemical performance of ESC based on the hybrid/composite material attributed to synergistic capacitances from EDLC and pseudocapacitance. Therefore, this review overviews the general perspective of the ESCs based on nanocarbons with various forms trending the progressive research contributions in developing high-performance ESCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据