4.2 Article

Bone implant substitutes from synthetic polymer and reduced graphene oxide: Current perspective

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/03913988231216572

关键词

Bone implant; epoxy resin; reduced-GO; calcium carbonate; crystal tubes

向作者/读者索取更多资源

In this study, bone implant materials (BIM) were developed with excellent mechanical properties, bioactivity, antimicrobial characteristics, and biocompatibility. BIM showed significant deposition of bone tube apatite crystals after immersion in a simulated body fluids (SBF) solution. The results suggest that BIM has the potential to be tested as a bone implant material in large animals.
In the present work, bone implant materials (BIM) were produced, in sheet form which comprises epoxy resin (synthetic polymer) (ER), calcium carbonate (CaCO3), and reduced graphene oxide (R-GO), by open mold method, for the possibility uses in bone tissue engineering. The developed BIM was analyzed for its physico-chemical, mechanical, bioactivity test, antimicrobial study, and biocompatibility. The BIM had excellent mechanical properties such as tensile strength (194.44 + 0.21 MPa), flexural strength (278.76 + 0.41 MPa), and water absorption (02.61 + 0.24%). A pore size distribution study using the HR-SEM has proved the 180 and 255 mu m average pore was observed in the BIM structure. The Bioactivity test of BIM was examined after being immersed in a simulated body fluids (SBF) solution. The result of BIM formed an excellent deposition of bone tube apatite crystals. High-resolution scanning electron microscopy (HR-SEM) morphology of the bone tube apatite crystals revealed the diameter size in the range from 100 +/- 159 to 210 +/- 188 nm. BIM has excellent antimicrobial characteristics against E. coli (8.75 + 0.06 mm) and S. aureus (9.82 + 0.08 mm). The biocompatibility of the study MTT (3-(4, 5-dimethyl) thiazol-2-yl-2, 5-dimethyl tetrazolium bromide) assay using the MG-63 (human osteoblast cell line) has proven to be the 78% viable cell presence in BIM. After receiving the necessary approval, the scaffold with the required strength and biocompatibility could be tested as a bone implant material in large animals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据